Using an old method of Jacobi to derive Lagrangians: a nonlinear dynamical system with variable coefficients

نویسنده

  • M. C. Nucci
چکیده

We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobi’s method by applying it to the same equation studied by Musielak et al. with their own method [Musielak ZE, Roy D and Swift LD. Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos, Solitons & Fractals, 2008;58:894-902]. While they were able to find one particular Lagrangian after lengthy calculations, Jacobi Last Multiplier method yields two different Lagrangians (and many others), of which one is that found by Musielak et al, and the other(s) is(are) quite new.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving linear and nonlinear optimal control problem using modified adomian decomposition method

First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...

متن کامل

An Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients

In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...

متن کامل

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

Solving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems

The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp)‎. ‎The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system‎. ‎In this article‎, ‎the obtained nonlinear system has been solved as a dynamical system‎. ‎The solution of the obtained nonlinear system by the dynamical system throug...

متن کامل

A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008